The Crystal Structures of $\mathrm{Sc}_{5} \mathrm{Si}_{3}, \mathrm{Sc}_{5} \mathrm{Ge}_{3}, \mathrm{La}_{5} \mathrm{Ge}_{3}$, and $\mathrm{Ce}_{5} \mathrm{Ge}_{3}$

By Joseph Arbuckle and Erwin Parthé
University of Pennsylvania, Metallurgy Department, Philadelphia, Pa., U.S.A.

(Received 26 March 1962)

Abstract

The crystal structures of $\mathrm{Sc}_{5} \mathrm{Si}_{3}, \mathrm{Sc}_{5} \mathrm{Ce}_{3}, \mathrm{La}_{5} \mathrm{Ce}_{3}$, and $\mathrm{Ce}_{5} \mathrm{Ce}_{3}$ have been studied by means of DebyeScherrer powder photographs. All compounds crystallize in the unfilled $\mathrm{Mn}_{5} \mathrm{Si}_{3}\left(\mathrm{D8}_{8}\right)$ structure type. The hexagonal lattice constants of $\mathrm{Sc}_{5} \mathrm{Si}_{3}$ are $a=7.861$ and $c=5.812 \AA$; those of $\mathrm{Sc}_{5} \mathrm{Ge}_{3}$ are $a=7.939$ and $c=5 \cdot 883 \AA$. The dimensions of $\mathrm{La}_{5} \mathrm{Ge}_{3}$ are $a=8.958$ and $c=6.795 \AA$ while those of $\mathrm{Ce}_{5} \mathrm{Ce}_{3}$ are $a=8.875$ and $c=6.570 \AA$. All of the above compounds have an unusually large c / a ratio.

Introduction

Due to the extreme difficulty of producing elementary scandium, few properties of this metal and its alloys are known at this time. A literature survey revealed that at present only about a score of scandium compounds are known. One might expect scandium to behave much like the rare earths with respect to properties and alloying ability, but this is not necessarily the case as scandium is almost 10% smaller than the smallest rare earth, lutecium.

This study on the structure of scandium silicides and germanides is the first paper in a series of investigations to reveal the crystal chemistry of scandium compounds.

The $\mathrm{Mn}_{5} \mathrm{Si}_{3}$ structure type has been the object of numerous recent investigations. It is geometrically related to the NiAs structure (Parthé, 1957; Jellinek, 1959) and to the σ phase (Aronsson \& Lundstrøm, 1957). The results of some recent work on $\mathrm{Y}_{5} \mathrm{Si}_{3}$ and $Y_{5} \mathrm{Ge}_{3}$ (Parthé, 1960) have prompted this study of D 88 phases with other transition metals of the third group of the periodic system.

Sample preparation and experimental results

The scandium, lanthanum, and cerium used in these experiments were supplied by the A. D. Mackay Co. The scandium was 99% pure, $0 \cdot 3 \%$ iron being the main impurity. Mixtures of scandium and powdered silicon in the proper proportion were arc-melted while scandium and powdered germanium were alloyed in an induction furnace. In both cases, the samples were under an inert atmosphere. The lanthanum and cerium were 99.9% pure. In each case, metal filings were pressed into a pill with the proper amount of germanium. The samples were then induction melted under inert atmosphere. The composition of all samples was cheeked by chemical analysis. The samples were homogenized by repeated induction heating to approximately $1300{ }^{\circ} \mathrm{C}$.

Debye-Scherrer photographs of $\mathrm{Sc}_{5} \mathrm{Si}_{3}, \mathrm{Sc}_{5} \mathrm{Ge}_{3}$, $\mathrm{La}_{5} \mathrm{Ge}_{3}$, and $\mathrm{Ce}_{5} \mathrm{Ge}_{3}$ were indexed, and in each case the unit cell was found to be hexagonal. The lattice
parameter, c / a ratios, and calculated densities are given below.

Compound	$a(\AA)$	$c(\AA)$	c / a	Density $\left(\mathrm{g} . \mathrm{cm} .^{-3}\right)$
${\mathrm{S} \mathrm{c}_{5} \mathrm{Si}_{3}}$	7.861	5.812	0.739	1.98
$\mathrm{Se}_{5} \mathrm{Ge}_{3}$	7.939	5.883	0.741	2.76
$\mathrm{La}_{5} \mathrm{Ge}_{3}$	8.958	6.795	0.759	3.72
$\mathrm{Ce}_{5} \mathrm{Ge}_{3}$	8.875	6.570	0.740	3.92

From the systematic extinctions, the space groups $D_{6 / h}^{3}-P 6_{3} / \mathrm{mcm}, D_{3 h}^{2}-P \overline{6} c 9, \quad C_{6 v}^{3}-P 6_{3} c m, \quad D_{3 l}^{4}-P \overline{3} c 1$, and $C_{3 r}^{3}-P 3 c 1$ were all found to be acceptable possibilities. The first of these was assumed for all of the compounds, the scandium (lanthanum or cerium) atoms being placed in equipoint $4 d$ and $6 g_{\mathrm{I}}$ with $x_{\mathrm{I}}=0 \cdot 25$ and the silicon (or germanium) atoms in equipoint $6 g_{\text {II }}$ with $x_{\text {II }}=0 \cdot 61$. The calculated and observed intensities are in excellent agreement.* The calculated d values and observed intensities are shown in Table 1. All four compounds crystallize in the unfilled D_{8} structure type.

Discussion

The compounds in this study all showed unusually high c/a ratios. In D_{8} phases with transition metals of Group IV or greater, the distance between metal atoms in the $4 d$ and $6 g$ positions is relatively large. With metals of Group III, atoms in these positions come very close to touching one another, and, in some cases, even overlap. A compression of the a axis results, causing the unusually large c / a ratio. This aspect and others will be discussed in detail in a forthcoming paper on the occurrence and lattice dimensions of $\mathrm{D} 8_{8}$ phases (Arbuckle \& Parthé; in preparation).

The authors wish to thank Dr M. V. Nevitt of Argonne National Laboratory for the arc-melting of the $\mathrm{Sc}_{5} \mathrm{Si}_{3}$ alloy. This work was supported by the U.S. Air Force under contract of AF 49 (638)-1027. This study is a contribution of the Laboratory for Research on the Structure of Matter, University of

* This data and $\sin ^{2} \theta$ values may be obtained by writing to the authors.

Table 1. Calculated d values and observed intensities
($\mathrm{Cr} K \times$ radiation)

	$\mathrm{Sc}_{5} \mathrm{Si}_{3}$		$\mathrm{Se}_{5} \mathrm{Ge}_{3}$			$\mathrm{La}_{5} \mathrm{Ce}_{3}$			$\mathrm{Ce}_{5} \mathrm{Ce}_{3}$	
hkil	$d_{c}(\AA)$	I_{0}	$d_{c}(\AA)$	I_{0}	hkil	$d_{c}(\AA)$	I_{0}	hkil	$d_{c}(\AA)$	J_{o}
$10 \overline{10} 0$	6.808	$v w$	6.875	w	1010	7.758	-	10 T 0	7.686	-
$11 \overline{2} 0$	3.930	-	$3 \cdot 969$	$v w$	112	$4 \cdot 479$	--	$112{ }_{2}$	4.437	-
$20 \overline{2} 0$	$3 \cdot 404$	w	$3 \cdot 438$	-	$20 \overline{2} 0$	$3 \cdot 879$	vow	2020	$3 \cdot 843$	$v w$
$11 \overline{2} 1$	$3 \cdot 257$	$v w$	$3 \cdot 290$	m	112]	$3 \cdot 741$	w	$11 \overline{2} 1$	$3 \cdot 677$	$v w$
0002	$2 \cdot 906$	$v w$	2.941	m	0002	$3 \cdot 398$	m	0002	$3 \cdot 284$	$v u$
1012	$2 \cdot 673$	$m w$	$2 \cdot 705$	m	1012	3.111	$m s$	10 I 2	$3 \cdot 021$	m
$21 \overline{3} 0$	2-573	m	$2 \cdot 599$	m	$21 \overline{3} 0$	$2 \cdot 932$	s	$21 \overline{3} 0$	$2 \cdot 905$	m
$21 \overline{3} 1$	$2 \cdot 353$	vvs	$2 \cdot 377$	vvs	1122	$2 \cdot 707$	vvs	$21 \overline{3} 1$	$2 \cdot 657$)	
$11 \overline{2} 2$	$2 \cdot 337$	vvs	$2 \cdot 363$	$v s$	$21 \overline{3} 1$	2.692	vvs	$11 \overline{2} 2$	$2 \cdot 640$)	vvs
$30 \overline{3} 0$	$2 \cdot 269$	s	2-292	s	$30 \overline{3} 0$	$2 \cdot 586$	\boldsymbol{s}	$30 \overline{3} 0$	$2 \cdot 562$	$m s$
$20 \overline{2} 2$	$2 \cdot 210$	$v w$	$2 \cdot 235$	w	2022	2.556	vvu	$20 \overline{2} 2$	$2 \cdot 497$	-
$22 \overline{4} 0$	1.965	-	1.985	-	$224{ }^{\text {(}}$)	$2 \cdot 240$	vvw	$22 \overline{4} 0$	2.219	--
$21 \overline{3} \overline{2}$	1.926	-	1.947	-	2132	2.220	-	$21 \overline{3} 2$	2.176	-
$31 \overline{4} 0$	1.888	vw	1.907	-	$31 \overline{4} 0$	2.151	vvw	3140	$2 \cdot 132$	-
$22 \overline{4} 1$	1.862	$v w$	1.880	$v w$	$22 \overline{4} 1$	$2 \cdot 127$	w	$22 \overline{4} 1$	$2 \cdot 102$	vvw
$31 \overline{4} 1$	1.796	$v{ }^{\prime}$	1.814	m	$30 \overline{3} 2$	$2 \cdot 058$ (3141	$2 \cdot 028$	vow
$30 \overline{3} 2$	1.788	--	1.808	-	$31 \overline{4} 1$	$2 \cdot 051$	w	$30 \overline{3} 2$	$2 \cdot 020$	-
$11 \overline{2} 3$	1.738	-	1.758	-	$112 \overline{2}$	$2 \cdot 021$	vvw	$11 \overline{2} 3$	1.964	-
$40 \overline{4} 0$	$1 \cdot 702$	--	$1 \cdot 719$	-.	4040	1.939	vvw	$40 \overline{4} 0$	1.921	$v v w$
$22 \overline{4} 2$	$1 \cdot 628$	m	1.64\%	w	$22 \overline{4} 2$	$1 \cdot 870$	$m s$	$22 \overline{4} 2$	1.839	w
$31 \overline{4} 2$	$1 \cdot 583$	-	$1 \cdot 600$	-	$31 \overline{4} 2$	1.818	$v u$	$31 \overline{4} 2$	1.788	$v v w$
$32 \overline{\text { 50 }} 0$	1-562	-	$1 \cdot 577$	-	$21 \overline{3} 3$	$1.793)$	s	$32 \overline{\overline{5}} 0$	1.763 \}	
$21 \overline{3} 3$	1-548	m	1.565	m	$32 \overline{5} 0$	1.780)	s	$21 \overline{3} 3$	1.749)	m
3251	$1 \cdot 508$	w	1-524	$v w$	$32 \overline{5} 1$	1.722	w	$32 \overline{5} 1$	1.703	$v w$
4150	$1 \cdot 486$	w	1-500	-	0004	$1 \cdot 699$	m	$41 \overline{5} 0$	1.677	vw
$40 \overline{4} 2$	$1 \cdot 469$	$m w$	$1 \cdot 484$	-	4150	$1 \cdot 693$	m	$40 \overline{4} 2$	$1 \cdot 659$	w
0004	$1 \cdot 453$	w	$1 \cdot 471$	w	$40 \overline{4} 2$	1-684	m	0004	$1 \cdot 642$	$v w$
4151	$1 \cdot 439$	--	$1 \cdot 454$	-	101]4	$1 \cdot 659$	-	$41 \overline{5} 1$	$1 \cdot 625$	-
1014	$1 \cdot 421$	-	1.438	-	$41 \overline{5} 1$	1-643	-	1014	$1 \cdot 606$	-
$22 \overline{4} 3$	$1 \cdot 380$	-	1-395	-	$22 \overline{4} 3$	1-593	vvw	$22 \overline{4} 3$	$1 \cdot 559$	-
3252	$1 \cdot 376$	$v w$	1-390	$v w$	$11 \overline{2} 4$	1-588	-	$32 \overline{5} 2$] 5.504	-
$11 \overline{2} 4$	$1 \cdot 363$)		1-379		$32 \overline{5} \overline{2}$	1.577	vww	$11 \overline{2} 4$	1.540	-
$50 \overline{3} 0$	$1 \cdot 362$ \}	$v w$	$1 \cdot 375$	$v w$	$31 \overline{4} 3$	$1 \cdot 560$	$v * w$	5050	1.537	$v v w$
3143	1-352	$v w$	$1 \cdot 367$	w	$20 \overline{2} 4$	1-556		$31 \overline{4} 3$	$1 \cdot 528$	-
$20 \overline{2} 4$	$1 \cdot 336$	-	$1 \cdot 352$	-	$50 \overline{\overline{5}} 0$	$1 \cdot 552$)	w	$20 \overline{2} 4$	$1 \cdot 510$	-
4152	$1 \cdot 323$	$v w$	$1 \cdot 337$	$v w$,	$41 \overline{9} \overline{2}$	1-515	vw	$41 \overline{5} 2$	1.494	$v v u$.
$33 \overline{6} 0$	$1 \cdot 310$	-	1-323	-	$33 \overline{6} 0$	1.493	-	$33 \overline{6} 0$	$1 \cdot 479$	-
$42 \overline{6} 0$	$1 \cdot 287$	$m w$	1.299	w	$21 \overline{3} 4$	1.470	w	$42 \overline{6} 0$	$1 \cdot 453$	$v w$
$33 \overline{6} 1$	$1 \cdot 278$	$m u$	$1 \cdot 291$	$v{ }^{\text {w }}$	$42 \overline{6} 0$	$1 \cdot 466$	w	$33 \overline{6} 1$	$1 \cdot 443$	$v w$
$21 \overline{3} 4$	1-265	$m w$	1-280	$v w$	$33 \overline{6} 1$	$1 \cdot 458$	w	$21 \overline{3} 4$	1.430	$v w$
$42 \overline{6} 1$	1-256	w	$1 \cdot 269$	m	42 ${ }^{\text {b }}$ l	$1 \cdot 433$	vuw	$42 \overline{6} 1$	$1 \cdot 418$	-
$50 \overline{5} 2$	$1 \cdot 233$	m, d	$1 \cdot 246$	s, d	$30 \overline{3} 4$	1.420	m, d	$50 \overline{5} 2$	$1 \cdot 392$	
$30 \overline{3} 4$	$1 \cdot 224$ \}	s, d	1.238		5052	$1 \cdot 411$	w	$30 \overline{3} 4$	$1 \cdot 383$	$m s$
$51 \overline{6} 0$	1-223	s, d	1-235)	s, d	$32 \overline{5} 3$	$1 \cdot 399$	w	\%1产	$1 \cdot 380$	
$32 \overline{5} 3$	$1 \cdot 216$	$m w$	1.229	-	$51 \overline{6} 0$	$1 \cdot 393$	$v w$	3253	$1 \cdot 373$	$v w$
$51 \overline{6} 1$	$1 \cdot 197$ (s, d	1-209	m, d	$33 \overline{6} 2$	$1 \cdot 367$: $1 \overline{6} 1$	$1 \cdot 351)$	
$33 \overline{6} 2$	1.194 f	s, d	1.207	m, a	$51 \overline{6} 1$	$1 \cdot 365$	$m s$	$33 \overline{6} 2$	$1 \cdot 349$)	m
$41 \overline{5} 3$	$1 \cdot 179$	-	1-192	-	$41 \overline{3} 3$	1-356	--	4153	$1 \cdot 332$	-
$42 \overline{6} 2$	$1 \cdot 176$	$v w, d$	$1 \cdot 189$	w, d	9244	$1 \cdot 353$	--	$42 \overline{6} 2$	1.328	-
2244	$1 \cdot 176$	vu, d	$1 \cdot 182$	-	$42 \overline{6} 2$	$1 \cdot 346$	vvu.	$22 \overline{4} 4$	1.320	-
					$31 \overline{4} 4$	$1 \cdot 333$	vvu.	$31 \overline{4} 4$	$1 \cdot 301$	-
					$11 \overline{2}$ \%	$1 \cdot 300$	-	$60 \overline{6} 0$	$1 \cdot 281$	-
					$60 \overline{6} 0$	$1 \cdot 293$	-	\%1 ${ }_{6} 2$	$1 \cdot 273$	--
					$51 \overline{6} 2$	$1 \cdot 289$	-	$43 \overline{7} 0$	1.264	-
					$40 \overline{4} 4$	$1 \cdot 978$		1195	1.260	-
					$43 \overline{\overline{7}} 0$	1.275	$v w$	$40 \overline{4} 4$	1.249	$v v u$.
					$43 \overline{7} 1$	$1 \cdot 253$	vew	$43 \overline{7} 1$	$1 \cdot 241$	-
					$33 \overline{6} 3$	$1 \cdot 247$	w	$52 \overline{7} 0$	$1 \cdot 231$	
					$52 \overline{7} 0$	1-242	2u,	$33 \overline{\overline{6}} 3$	1-226	w
					$21 \overline{3} 5$	$1 \cdot 233$		$42 \overline{6} 3$	$1 \cdot 210$	
					$42 \overline{6} 3$	1.231	$m s, d$	¢27 1	$1 \cdot 210$	s, d
					$32 \overline{5} 4$	$1 \cdot 229$		$32 \overline{5} 4$	$1 \cdot 202$	
					\%971	$1 \cdot 222$	m, d	$21 \overline{3} 5$	$1 \cdot 197$	
					$60 \overline{6} 2$	$1 \cdot 208$	m, d	$60 \overline{6} 2$	$1 \cdot 193$	s, d
					$41 \overline{5} 4$	$1 \cdot 199$		$43 \overline{\overline{7}} 2$	1-179	
					$43 \overline{7} 2$	$1 \cdot 194$	s, d	$41 \overline{5} 4$	$1 \cdot 173$	\cdots, d
					$51 \overline{6} 3$	$1 \cdot 187$	m, d	$61 \overline{7}$ ()	1.172	
					$61 \overline{7} 0$	$1 \cdot 183$	m, d	$51 \overline{6} 3$	1.168	s. d

Pennsylvania, supported by the Advanced Research Projects Agency, Office of the Secretary of Defense. This paper is part of a thesis to be submitted by Mr Joseph Arbuckle to the Graduate School of Arts and Sciences of the University of Pennsylvania, Philadelphia, Pennsylvania, in partial fulfillment of the requirement for the Ph.I. degree.

References

Aronsson, B. \& Lundström, 'J. (1957). Acta Chem. Scand. 11, 365.
Jellinek, F. (1959). Ö̈st. Chem. Zig. 60, 311.
Parthé, E. (1957). Powder Metall. Bull. 8, 23.- Errata and additions (1958). Powder Metall. Bull. 8, 70.
Parthé, F. (1960). Acta Cryst. 13, 868.

A Redetermination of the Orthorhombic IF $_{7}$ Structure

By R. D. Burbank
Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey, U.S.A.

(Received 7 March 1962)

Abstract

The idealized molecular configuration in orthorhombic IF_{7} has the point symmetry mm and can be derived from dodecahedral 8 -coordination by allowing two atoms at one end of the $\overline{4}$ axis to coalesce into one. There are five bonds at $1.825 \AA, \sigma=0.03 \AA$, and two bonds at $1.97 \AA, \sigma=0.04 \AA$, in keeping with the chemical properties of IF_{7} and IF_{5}. The same configuration has recently been observed in the ethylenediamine tetraacetoaquoferrate (III) ion. The revised structure was determined following a careful evaluation of the intensity data which entered into an earlier $3 d$ Fourier difference analysis. Serious, non-calculable, systematic errors were found in the precession camera experiment. The most erroneous class of observations, the upper levels, were discarded. The zero levels were analyzed by least squares. The systematic errors for each zero level were treated as a separate problem in scaling and weighting analysis.

Introduction

Over a decade ago the writer and F. N. Bensey undertook a program of study of the polyfluoride branch of the interhalogen compounds. The crystal structures of $\mathrm{ClF}_{3}, \mathrm{BrF}_{3}$, and BrF_{5} at low temperatures were determined in a relatively straightforward manner. The most interesting member of the group, IF_{7}, proved to be quite troublesome. In a preliminary report (Burbank \& Bensey, 1953b) a structure was described which could have a symmetry no higher than that of the point group mm. This conclusion was unaltered in the final results of a $3 d$ Fourier difference analysis (Burbank \& Bensey, 1957a, b). The molecular structure found in the crystalline state was not in agreement with the interpretations given to a variety of other physical measurements.

Lord et al. (1950) studied the Raman spectra of the liquid and the infrared spectra of the gas, both at room temperature. Within the limited resolution of the spectra they stated that there was no noticeable departure from the selection rules for the point group symmetry $D_{5 h}$, a pentagonal bipyramid. Gutowsky \& Hoffman (1951) studied the nuclear magnetic resonance of the liquid at room temperature. The multiple F^{19} absorption lines were unexpectedly broad for a liquid. The simplest interpretation is that the F^{19} nuclei are in non-equivalent structural positions,
which is not inconsistent with a $D_{5 h}$ structure. Overlap of individual lines prevented more detailed analysis. Bauer (1952) assumed a $D_{5 h}$ structure to analyze the electron diffraction of the gas at $-65{ }^{\circ} \mathrm{C}$. In a revised analysis of the same data LaVilla \& Bauer (1960) considered it necessary to introduce displacements of the five girdle atoms in directions perpendicular to the plane of the girdle.

Donohue (1959) made the categorical statement that the interpretation of the crystal structure was incorrect and that the molecular symmetry in orthorhombic IF_{7} was $D_{5 h}$. Recently Lohr \& Lipscomb (1962) have reported a recalculation based on the Burbank \& Bensey (1957a) data using the BusingLevy ($1959 a$) least squares program. It is claimed that the recalculation provides a quantitative statistical basis for Donohue's statement. However, this claim is compromised by the following factors:

1. The data contain serious and unknown systematic errors.
2. Under these circumstances the weighting system used is entirely arbitrary.
3. A complete set of anisotropic thermal parameters was introduced under circumstances in which they can have no physical meaning and in which they may interact seriously with the positional parameters.
