The Crystal Structures of Sc₅Si₃, Sc₅Ge₃, La₅Ge₃, and Ce₅Ge₃

By Joseph Arbuckle and Erwin Parthé

University of Pennsylvania, Metallurgy Department, Philadelphia, Pa., U.S.A.

(Received 26 March 1962)

The crystal structures of Sc_5Si_3 , Sc_5Ge_3 , La_5Ge_3 , and Ce_5Ge_3 have been studied by means of Debye-Scherrer powder photographs. All compounds crystallize in the unfilled $Mn_5Si_3(D8_8)$ structure type. The hexagonal lattice constants of Sc_5Si_3 are a = 7.861 and c = 5.812 Å; those of Sc_5Ge_3 are a = 7.939 and c = 5.883 Å. The dimensions of La_5Ge_3 are a = 8.958 and c = 6.795 Å while those of Ce_5Ge_3 are a = 8.875 and c = 6.570 Å. All of the above compounds have an unusually large c/a ratio.

Introduction

Due to the extreme difficulty of producing elementary scandium, few properties of this metal and its alloys are known at this time. A literature survey revealed that at present only about a score of scandium compounds are known. One might expect scandium to behave much like the rare earths with respect to properties and alloying ability, but this is not necessarily the case as scandium is almost 10% smaller than the smallest rare earth, lutecium.

This study on the structure of scandium silicides and germanides is the first paper in a series of investigations to reveal the crystal chemistry of scandium compounds.

The Mn₅Si₃ structure type has been the object of numerous recent investigations. It is geometrically related to the NiAs structure (Parthé, 1957; Jellinek, 1959) and to the σ phase (Aronsson & Lundstrøm, 1957). The results of some recent work on Y₅Si₃ and Y₅Ge₃ (Parthé, 1960) have prompted this study of D8₈ phases with other transition metals of the third group of the periodic system.

Sample preparation and experimental results

The scandium, lanthanum, and cerium used in these experiments were supplied by the A. D. Mackay Co. The scandium was 99% pure, 0.3% iron being the main impurity. Mixtures of scandium and powdered silicon in the proper proportion were arc-melted while scandium and powdered germanium were alloyed in an induction furnace. In both cases, the samples were under an inert atmosphere. The lanthanum and cerium were 99.9% pure. In each case, metal filings were pressed into a pill with the proper amount of germanium. The samples were then induction melted under inert atmosphere. The composition of all samples was checked by chemical analysis. The samples were homogenized by repeated induction heating to approximately 1300 °C.

Debye-Scherrer photographs of Sc_5Si_3 , Sc_5Ge_3 , La_5Ge_3 , and Ce_5Ge_3 were indexed, and in each case the unit cell was found to be hexagonal. The lattice

٢

parameter, c/a ratios, and calculated densities are given below.

Compound	a (Å)	c (Å)	c/a	(g.cm. ⁻³)
Se_5Si_3	7.861	5.812	0.739	1.98
Sc_5Ge_3	7.939	5.883	0.741	2.76
La_5Ge_3	8.958	6.795	0.759	3.72
Ce_5Ge_3	8.875	6.570	0.740	3.92

From the systematic extinctions, the space groups $D_{3h}^{3}-P6_{3}/mcm$, $D_{3h}^{2}-P\overline{6}c2$, $C_{6v}^{3}-P6_{3}cm$, $D_{3d}^{4}-P\overline{3}c1$, and $C_{3v}^{3}-P3c1$ were all found to be acceptable possibilities. The first of these was assumed for all of the compounds, the scandium (lanthanum or cerium) atoms being placed in equipoint 4d and $6g_{1}$ with $x_{1}=0.25$ and the silicon (or germanium) atoms in equipoint $6g_{11}$ with $x_{11}=0.61$. The calculated and observed intensities are in excellent agreement.* The calculated d values and observed intensities are shown in Table 1. All four compounds crystallize in the unfilled D8₈ structure type.

Discussion

The compounds in this study all showed unusually high c/a ratios. In D8₈ phases with transition metals of Group IV or greater, the distance between metal atoms in the 4d and 6g positions is relatively large. With metals of Group III, atoms in these positions come very close to touching one another, and, in some cases, even overlap. A compression of the a axis results, causing the unusually large c/a ratio. This aspect and others will be discussed in detail in a forthcoming paper on the occurrence and lattice dimensions of D8₈ phases (Arbuckle & Parthé; in preparation).

The authors wish to thank Dr M. V. Nevitt of Argonne National Laboratory for the arc-melting of the Sc_5Si_3 alloy. This work was supported by the U.S. Air Force under contract of AF 49 (638)-1027. This study is a contribution of the Laboratory for Research on the Structure of Matter, University of

^{*} This data and $\sin^2\theta$ values may be obtained by writing to the authors.

Table 1. Calculated d	values a	and observed	intensities			
(Cr $K\alpha$ radiation)						
Se-Ge.	1	L	a.Ge.			

	Sc ₅ Si ₃		$\mathrm{Se}_{5}\mathrm{Ge}_{3}$			La ₅ Ge ₃				Ce ₅ Ge ₃		
hkil	$\overline{d_c(\text{\AA})}$	In	$d_{c}(\dot{A})$	I.		hkil	$\overline{d_c(\mathbf{A})}$	In	hkil	$d_{c}(\hat{A})$	I _a	
1010	6.808	vw	6.875	w		1010	7.758		1010	7.686		
1120	3.930		3.969	vw		$11\bar{2}0$	4.479		1120	4.437	_	
$20\overline{2}0$	3.404	w	3.438		Ì	$20\overline{2}0$	3.879	vvw	$20\bar{2}0$	3.843	vw	
$11\bar{2}1$	3.257	vw	3.290	m]	1121	3.741	w	1121	3.677	vw	
0002	2.906	vw	2.941	m		0002	3.398	m	0002	3.284	vw	
1012	2.673	mw	2.705	m		1012	3.111	ms	1012	3.021	m	
2130	2.013	m 21218	2.399	111	ĺ	1159	2.932	8 11110	2130	2.805	m	
1122	2.337	1118	2.363	28		2131	2.692	1118	1122	2.640	vvs	
3030	2.269	8	2.292	8	1	3030	2.586	8	3030	2.562	ms	
$20\overline{2}2$	$2 \cdot 210$	vw	2.235	w	÷	$20\overline{2}2$	2.556	vvw	$20\overline{2}2$	2.497	—	
$22\overline{4}0$	1.965		1.985			$22\bar{4}0$	$2 \cdot 240$	vvw	$22\overline{4}0$	$2 \cdot 219$		
2132	1.926	_	1.947			2132	2.220		2132	2.176		
3140	1.888	vw	1.907		:	3140	2.151	vvw		2.132		
2241	1.862	vw	1.814	$\frac{vw}{m}$		2241	2.127	w	2241	2.102	vvw	
3039	1.788	vu-	1.808			3141	$-\frac{2.058}{2.051}$	w	3032	2.028		
1123	1.738		1.758			$11\overline{2}3$	$\frac{2}{2} \cdot 021$	vnv	1123	1.964		
4040	1.702		1.719		Ì	4040	1.939	vvw	4040	1.921	vvw	
$22\overline{4}2$	1.628	m	1.645	w		$22\overline{4}2$	1.870	ms	$22\overline{4}2$	1.839	w	
$31\overline{4}2$	1.583	_	1.600		{	3142	1.818	vw	$31\overline{4}2$	1.788	vvw	
3250	1.562	_	1.577			2133	1.793	8	3250	1.763	m	
2133	1.548	m	1.594	m		3250	1.780 J		2133	1.749		
5251 4150	1.008	w	1.500	vu		0004	1.600	w	3251	1.677	200	
4042	1.469	mw	1.484		l	$41\overline{50}$	1.693	m	4042	1.659	w	
0004	1.453	w	1.471	w	}	4042	1.684	m	0004	1.642	vw	
4151	1.439		1.454	_		1014	1.659		4151	1.625		
1014	1.421		1.438	_		4151	1.643		1014	1.606		
2243	1.380		1.395		:	2243	1.593	vvw	2243	1.559		
3252	1.376	vw	1.390	vw		1124	1.588		3252	1.554		
5050	1.303	vw	1.379	vw	j	3252	1.560	vvw	5020	1.540		
3143	1.352	21217	1.367	217	1	2024	1.556	vvu	3143	1.528		
$20\bar{2}4$	1.336	_	1.352			$50\bar{5}0$	1.552	w	2024	1.520 1.510		
$41\overline{5}2$	1.323	vw	1.337	vw		$41\overline{5}\overline{2}$	1.515	vw	$41\overline{5}2$	1.494	vvu	
$33\overline{6}0$	1.310		1.323		1	33 <u>6</u> 0	1.493		33 60	1.479		
4260	1.287	mw	1.299	w		2134	1.470	w	426 0	1.453	vw	
3361	1.278	mw	1.291	vv		4260	1.466	w	3361	1.443	vw	
2134 49 <u>6</u> 1	1.205	mw	1.280	vw m		3301 49 <u>6</u> 1	1.438	w	2134	1.430	vw	
$50\overline{5}2$	1.233	m, d	1.246	s. d	1	3034	1.420	m d	5052	1.392		
$30\bar{3}4$	1.224)	,	1.238	,	!	$50\bar{5}2$	1.411	w	3034	1.383	ms	
$51\overline{6}0$	1·223 ∫	s, a	1·235 ∫	s, a		$32\overline{5}3$	1.399	w	5160	1.380		
$32\overline{5}3$	1.216	mw	1.229			$51\overline{6}0$	1.393	vw	$32\overline{5}3$	1.373	vw	
5161	1.197	s, d	1.209	m, d		3362	(1.367)	ms	5161	1.351	m	
3362 4159	1·194 J 1.170		1.207 J	·		0101 4129	1,360 J		3362	1.349		
4262	1.170		1.189	w.d		2944	1-350		4103	1.332		
2244	1.176	vw, d	1.182			4262	1.346	vvu	2244	1.320		
					1	3144	1.333	vvu	3144	1.301	~	
						$11\overline{2}5$	1· 3 00	~	6060	1.281		
					÷	6060	1.293	~	$51\overline{6}2$	1.273		
						5162	1.289		4370	1.264		
						4044	$-\frac{1\cdot278}{1\cdot975}$	vw	1125	1.260		
					i	4370	1.270 J	2121211	4044	1.249	vvu	
					1	3363	$1.200 \\ 1.247$	u v	5270	1.231		
						$52\overline{7}0$	1.242	vw	3363	1.226	w	
						$21\overline{3}5$	1.233		$42\overline{6}3$	1·210 j		
						42 6 3	1.231	ms, d	52 <u>7</u> 1	1.210	•	
						3254	1·229 J		3254	1·202		
						60 <u>8</u> 9	1.222	m, d	2135 8089	1.109	s, d	
						4154	1.199 1	m, a	4379	1·190 J 1·170)	1	
						$43\overline{7}2$	1.194	s, d	4154	1.173	s, d	
					:	$51\overline{6}3$	1.187	m, d	6170	1.172		
						$61\overline{7}0$	1.183	m, d	$51\overline{6}3$	I·168 j	s, a	

•

Pennsylvania, supported by the Advanced Research Projects Agency, Office of the Secretary of Defense.

This paper is part of a thesis to be submitted by Mr Joseph Arbuckle to the Graduate School of Arts and Sciences of the University of Pennsylvania, Philadelphia, Pennsylvania, in partial fulfillment of the requirement for the Ph.D. degree.

References

ARONSSON, B. & LUNDSTRÖM, T. (1957). Acta Chem. Scand. 11, 365.

JELLINEK, F. (1959). Öst. Chem. Ztg. 60, 311.

PARTHÉ, E. (1957). Powder Metall. Bull. 8, 23.— Errata and additions (1958). Powder Metall. Bull. 8, 70.

PARTHÉ, E. (1960). Acta Cryst. 13, 868.

Acta Cryst. (1962). 15, 1207

A Redetermination of the Orthorhombic IF₇ Structure

By R. D. BURBANK

Bell Telephone Laboratories, Incorporated, Murray Hill, New Jersey, U.S.A.

(Received 7 March 1962)

The idealized molecular configuration in orthorhombic IF₇ has the point symmetry mm and can be derived from dodecahedral 8-coordination by allowing two atoms at one end of the $\overline{4}$ axis to coalesce into one. There are five bonds at 1.825 Å, $\sigma = 0.03$ Å, and two bonds at 1.97 Å, $\sigma = 0.04$ Å, in keeping with the chemical properties of IF₇ and IF₅. The same configuration has recently been observed in the ethylenediamine tetraacetoaquoferrate (III) ion. The revised structure was determined following a careful evaluation of the intensity data which entered into an earlier 3d Fourier difference analysis. Serious, non-calculable, systematic errors were found in the precession camera experiment. The most erroneous class of observations, the upper levels, were discarded. The zero levels were analyzed by least squares. The systematic errors for each zero level were treated as a separate problem in scaling and weighting analysis.

Introduction

Over a decade ago the writer and F. N. Bensey undertook a program of study of the polyfluoride branch of the interhalogen compounds. The crystal structures of ClF₃, BrF₃, and BrF₅ at low temperatures were determined in a relatively straightforward manner. The most interesting member of the group, IF₇, proved to be quite troublesome. In a preliminary report (Burbank & Bensey, 1953b) a structure was described which could have a symmetry no higher than that of the point group mm. This conclusion was unaltered in the final results of a 3d Fourier difference analysis (Burbank & Bensey, 1957*a*, *b*). The molecular structure found in the crystalline state was not in agreement with the interpretations given to a variety of other physical measurements.

Lord *et al.* (1950) studied the Raman spectra of the liquid and the infrared spectra of the gas, both at room temperature. Within the limited resolution of the spectra they stated that there was no noticeable departure from the selection rules for the point group symmetry D_{5h} , a pentagonal bipyramid. Gutowsky & Hoffman (1951) studied the nuclear magnetic resonance of the liquid at room temperature. The multiple F^{19} absorption lines were unexpectedly broad for a liquid. The simplest interpretation is that the F^{19} nuclei are in non-equivalent structural positions, which is not inconsistent with a D_{5h} structure. Overlap of individual lines prevented more detailed analysis. Bauer (1952) assumed a D_{5h} structure to analyze the electron diffraction of the gas at -65 °C. In a revised analysis of the same data LaVilla & Bauer (1960) considered it necessary to introduce displacements of the five girdle atoms in directions perpendicular to the plane of the girdle.

Donohue (1959) made the categorical statement that the interpretation of the crystal structure was incorrect and that the molecular symmetry in orthorhombic IF₇ was D_{5h} . Recently Lohr & Lipscomb (1962) have reported a recalculation based on the Burbank & Bensey (1957*a*) data using the Busing-Levy (1959*a*) least squares program. It is claimed that the recalculation provides a quantitative statistical basis for Donohue's statement. However, this claim is compromised by the following factors:

- 1. The data contain serious and unknown systematic errors.
- 2. Under these circumstances the weighting system used is entirely arbitrary.
- 3. A complete set of anisotropic thermal parameters was introduced under circumstances in which they can have no physical meaning and in which they may interact seriously with the positional parameters.